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NOTATION

Area

Axisymmetric displacement thickness, Equation (12]
Constant in Mangler’s transformations, Equation [(42)
Drag coefficient, D/%p v2

Total drag
Skin-friction drag

Pressure drag

Subscript for quantities at tail of body

Subscript for quantities at point where § << r_ no longer holds
Two-dimensional shape parameter, 5%/¢

Axisymmetric shape parameter, A%/ Q

Exponent in Equation [76], (1 + m) (H + 2)

Length of body

Axial distance along body of revolution

Exponent of power law for local coefficient of skin friction,
Equation (74]

Subscript for quantities at neutral stability point
Exponent of power law for velocity profiles, Equation [85]
Pressure in boundary layer

Pressure of undisturbed incoming stream

Exponent in Equation [92]

Velocity of fluid in ¢-direction

Turbulent fluctuation in 9%

Body Reynolds number, L U_/v
Boundary-layer Reynolds number, 8 U/v

Transverse radius from axis of body
Transverse radius to surface of body of revolution

Radius to equivalent body with added displacement thickness
Subscript for quantities at transition

Subscript for quantities at transition point induced by free-
stream turbulence
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Subscript for quantities at self-excited transition point
Velocity at outer edge of boundary layer
Velocity of undisturbed incoming stream

Velocity of fluid parallel to surface of body in 2-direction
(mean velocity for turbulent flows)

Turbulent fluctuation in u

Velocity of fluid normal to surface of body (mean velocity
for turbulent flows)

Turbulent fluctuation in v
Arc length along meridian profile

Distance normal to body surface

Angle between tangent to surface and axis of body
Thickness of boundary layer
Two-dimensional displacement thickness

Constant in power law for local coelficient of skin friction
in Equation [74]

&
Two-dimensional momentum thickness,J‘ . (l-%) % dy
0
L]
Displacement mu.j (1-1‘6) rdy
0

Viscosity of fluid
Kinematic viscosity of fluid
Density of fluid

Normal-stress term, pﬁ

Shearing stress, ,.gl‘- pu’
y

Shearing stress at body surface

Angle between a meridian plane and the reference meridian plane

5

Momentum nea,j (l - ll‘/-)ll‘/- rdy

0

Momentum: area of wake at infinity downstream

Subscript for quantities at zero pressure gradient on flat plates

Tilde over equivalent two-dimensional quantities
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ABSTRACT

A procedure is presented for calculating the viscous drag of bodies of
revolution in axial motion from boundary-layer theory. Rapid approximate
methods are developed for computing the growth of the laminar and turbulent
boundary layers. A new empirical criterion is given for locating the position of
self-excited transition associated with low-turbulence flows.

INTRODUCTION

A completely immersed body moving rectilinearly with uniform velocity in an infinite
fluid at rest experiences a resisting force which may be termed viscous drag as it results pri-
marily from the viscous properties of the fluid. In designing low-drag bodies there often »-
rises the need for calculating the viscous drag of streamlined bodies of revolution in axial
motion when considering various proposed shapes. For bodies moving at high Reynolds num-
bers, which are of great technical importance, the viscous drag of streamlined bodies of revo-
lution is readily amenable to analytical treatment on the basis of the boundary-layer concept.

Historically, the theoretical analysis of the drag of bodies in uniform motion by as-
suming an ideal (non-viscous) fluid gave the fruitless result of zero drag for all bodies, the
classical D'Alembert paradox. At the other extreme, the theoretical analysis of drag by apply-
ing the complete set of Navier-Stokes equations of motion for the flow of a viscous fluid led,
in general, to mathematical difficulties which were virtually unresolvable owing to the com-
plicated non-linear nature of these equations. For bodies moving at high Reynolds numbers,
however, the flow is virtually that of an ideal fluid except in a thin boundary layer next to the
body where substantial viscous forces are produced by the rapid drop in velocity to zero at the
body surface. Accordingly, by considering the viscous flow confined to the boundary layer,
Prandt]l was able to derive the simpler boundary-layer equations of motion from the Navier-
Stokes equations.

The principal purpose of this report is to describe methods of solving the boundary-
layer equations of motion to arrive at the viscous drag of bodies of revolution of arbitrary
shape in uniform axial motion. The study is restricted to hydraulically or aerodynamically
smooth streamlined bodies in incompressible flow. A streamlined body may be defined as one
without appreciable separation of flow from its surface and consequently with small pressure
drag resulting from the generation of separation eddies. It is to be noted, however, that some
pressure drag is still present in the viscous drag of even perfectly streamlined shapes owing
to the effect of the boundary layer in displacing the main flow outward, especially near the
tail.

The calculation of the viscous drag of a body of revolution requires a detailed analysis
of the development of each phase of the boundary layer from its origin on the nose of the body
to its final phase as the frictional wake far downstream. In the downstream direction the



boundary layer may consist successively of: a laminar boundary layer, a transition sone from
laminar to turbulent flow, a turbulent boundary layer,and a frictional wake.

In the laminar boundary layer an approximate method involving a simple quadrature is
derived for the rapid calculation of the changes in momentum. The derivation consists of an
extension to axisymmetric flows past bodies of revolution of a method of successive approx-
imation introduced by Shveta! for two-dimensional laminar boundary layers.

New empirical criteria are presented for locating the position of transition for either
low-turbulence or turbulent free-streams from the position of neutral stability. The position
of so-called self-excited transition occurring in low-turbulence streams or under flight con-
ditions is based on the average pressure gradient from the position of neutral stability to that
of transition. Although the test data are for two-dimensional flows, the criterion is extended
to axisymmetric flows past bodies of revolution by means of Mangler’ s transformations. An
approximate criterion for estimating the position of transition on a body in a turbulent free-
stream is established on the basis of measured positions of transition for flat plates in free
streams with various degrees of turbulence,

The analysis of the axisymmetric turbulent boundary layer on a body of revolution is
divided into that for the main portion of the body, where the boundary layer is relatively thin
compared to the radius of the body, and that for the tail portion, where the boundary layer is
relatively thick. The momentum changes in the thin boundary layer may be calculated by a
rapid method involving a simple quadrature wherein a power-law relation for the skin friction
of flat plates is incorporated. Flat-plate values for skin friction are deemed reliable even
where the local skin friction is diminishing in an adverse pressure gradient owing to the com-
pensating effect of the Reynolds normal-stress term. The turbulent boundary layer on the tail
is analyzed by means of appropriate linear simplifications which give a rapid method for cal-
culating the momentum changes. An expression is derived for the change in momentum pro-
duced by the pressure difference in the wake at the tail and in the wake far downstream in ac-
cordance with a method presented by Young? wherein, however, a more general relationship is
employed for the variation of the shape parameter of the velocity profile.

" For quick reference the various steps involved in calculating the development of the
boundary layer on a body of revolution are summarized at the end of this report.

GENERAL CONSIDERATIONS

AXISYMMETRIC BOUNDARY-LAYER FLOW

The main elements comprising axisymmetric flow past a body of revolution at high
Reynolds numbers are shown in Figure 1 for the meridian plane. Two principal regions of
flow are indicated: the boundary layer next to the body with viscous flow and the region

1

References are listed on page 29,



external to the boundary layer with essentially potential (non-viscous) flow. The pressure dis-
tribution along the body is mainly determined by the potential flow with only a slight modifi-
cation arising from the boundary-layer flow except right at the tail where the after stagnation
pressure of potential flows is absent. The pressure distribution on the body is important in
determining the boundary-layer flow inasmuch as it is one of the most important factors gov-
erning the growth and development of the boundary layer. A negative pressure gradient is
termed favorable and a positive pressure gradient adverse in connection with preventing sepa-
ration of the boundary-layer flow from the body surface.

Starting as laminar flow at the stagnation point on the nose, the boundary-layer flow de-
velops instability and undergoes transition to turbulent flow at some position downstream on
the body. The boundary-layer flow usually continues turbulent for the remaining after portion
of the body and leaves the tail as the frictional wake which extends indefinitely downstream.

VISCOUS DRAG

The viscous drag of a body is generally derivable from the boundary-layer flow either
on the basis of the local forces acting on the surface of the body or on the basis of the ve-
locity profile of the wake far downat.rum: The local hydrodynamic force on & unit of surface
area is resolvable into a surface shearing stress or local skin friction =  tangent to the body
surface and a pressure p normal to the surface. The summation over the whole body surface
of the axial components of the local skin friction and of the pressure gives, respectively, the
skin-friction drag D, and the pressure drag Dp which for a body of revolution in axisymmetric
flow become

[ ]
D,-Q.J. fy T, CO8 ads (1)
(}
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Figure 1 - Typical Boundary Layer Around a Body of Revolution in a Meridian Plane
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where ¢ is the radius from the axis to the body surface,

a is the angle between the tangent to the meridian profile and the axis of the body,

z is the arc length along the meridian profile, and

z, is the total arc length of the body from nose to tail,

The sum of the two drags then constitutes the total viscous drag D or
D=D+ D, (3]

The alternate procedure involving the velocity profile of the wake, which is better
suited to the methods of this report, is to determine the total drag, without need of resolution
into skin-friction and pressure drag, by considering the net rate of loss of momentum of the
flow of the entire stream. The analytical procedure is to apply the momentum theorem of
hydrodynamics to a control surface enclosing a region about the body with dimensions suf-
ficiently large to have substantially undisturbed free-stream pressure g_ at its periphery. The
total drag of the body which is the net rate of loss of momentum in the axial direction is then
given by

D-2ij (U, -u)rdr (4)
0

where U_ is the velocity of the incoming undisturbed stream ahead of the body,
u is the velocity in the wake far downstream,
r is the radial distance from the axis, and
p is the mass density of the fluid.

In terms of the momentum area of the wake far downstream

Q. = j. —U"—.-. (1 - -l;‘:)cdr (5
°
the drag is
D=2rmp U2 Q_ (6]

The drag coefficient C, based on some appropriate reference area 4 is

CD - D - 4'2. [7]

1 2 y: |
2pU~A

Inasmuch as the momentum ares of the wake Q_ is the final stage of the development
of the boundary-layer flow from its inception on the nose of the body, it is necessary to cal-




culate the momentum area of the boundary-layer flow for each of its stages in order to deter-
mine the resulting drag of the body.

PRESSURE DISTRIBUTION ALONG THE BODY

Before any boundary-layer calculations can be performed for the body of revolution
whose drag is to be determined, it is necessary to have on hand the distribution of pressure p
along the body, which in non-dimensional terms is usually presented as

2
.f_'_&-_.x-(g.) (8)
l,p2 -
2?-

Here p_ is the pressure of the undisturbed stream far ahead, and U is the velocity at the outer
edge of the boundary layer.

Where no experimental values of pressure distribution are available, recourse can be
had to methods for calculating the potential flow past the body which involve the solution of
the Laplace equation for arbitrary boundary conditions. Such methods, which are reviewed
briefly and evaluated in Reference 3, are, in general, numerically arduous and difficult to
apply to bodies of arbitrary shape. Recently, Landweber? developed an accurate method, well
suited to automatic calculating machines, in which a special iteration formula is employed in
solving the resulting Fredholm integral equation of the first kind. A faster method, giving,
however, only approximate results, is that of Young and Owen* which involves interpolation
among tabulated values of Legendre polynomials.

For the original profile of the body of revolution the calculated pressure distribution
for potential flow agrees closely with measured values over most of the length of the body,
the greatest discrepancy appearing near the tail because of the displacement effect of the
boundary layer. A closer result can be obtained, however, by repeating the potential-flow cal-
culation for a somewhat altered body consisting of the original contour and an added thickness
based on the displacement effect of the boundary layer. The added displacement thickness in
the y-direction normal to the surface for a body of revolution in axisymmetric flow, as shown
in Figure 2, is obtained by equating the total flow retarded in the boundary layer of thickness
5 to the amount subtracted from the potential flow of thickness a*® or

a* 8
I 20 (U-0)rdy = J- 27 (U -vu)rdy (9]
[ 0
or
a* 8

Irdy - I (1-1;7),43, .« A’ (10)
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Figure 2 - Equivalent Body of Revolution with Displacement Thickness

where A® is the displacement area. Substituting

r=r, +ycosa (11}

in Equation [10] gives

-r + ¥Yr2+2A% cosa
at-__!o {:I [12]
CO8 a

Over the forward part of the body where § <<r_, a’ reduces o

5
- -4 -5 (13]
a j (1 U)dy 5

0

which is the displacement thickness for two-dimensional flow. In the wake where r = 0,

Equation [12] reduces to
a'= Y2 A® {14}
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It is convenient to define a radius r* to the surface of the equivalent body, shown in
Figure 2,

r°=r, + a cosa [15)

Then from {12]

g y/rw’ +2A% cosa (16)

AXISYMMETRIC LAMINAR BOUNDARY LAYER

The solution of iaminar boundary layers in either two-dimensional or axisymmetric
flows has been the subject of numerous mathematical investigations owing to the interesting
characteristics of the resulting equations of motion. The considerable literature that has
developed contains methods of various degrees of complexity and precision which are given in
the summaries by Goldstein3 and more recently in the AVA Monographs® and by Schlichting.”
For many drag calculations very precise solutions of the boundary layer, cequiring extensive
numerical work, are usually not warranted, especially where the laminar boundary layer con-
stitutes a small part of the whole boundary layer. A simple approximate formula, well adapted
to drag calculations, will be devised by an extension to axisymmetric flow of a method of suc-
cessive approximation introduced by Shvets! for two-dimensional flows.

Owing to the thinness of the laminar boundary layer on the forward part of the body,

5 <<r,, the equations of motion for steady axisymmetric boundary-layer flow past a body of
revolution with negligible longitudinal curvature (Reference 5) reduce to

ua—“#”a—u-—l.alﬁvgz—“-
Jz ay p 02 dy?

(17)
0=92
dy
and the equation of contin.iity reduces to
dr
9% , 9% v _w
ac*ay*rw dz 0 (18]

Here u and v are the z- and y-components of the boundary-layer velocity respectively parallel
and normal to the surface of the body in the meridian plane, p is the pressure in the boundary
layer, v is the kinematic viscosity of the fluid, and § is the thickness of the boundary layer
in the y-direction. These equations have been shown® to remain applicable at the forward
stagnation point for bodies with blunt noses even thdugh both 5, s, + 0. The following
boundary conditions are to be satisfied by the boundary-layer equations:



=0 at y-o
u-Ulty-& [19]

The pressure p and the velocity U at the outer edge of the boundary layer are related by
Bernouilli's equation for potential flow

p +% pU? = constant (20]
o 1d av
- - U ——

. # ) (21]

Combining the equation of motion, [17), the continuity equation, (18], and the differential
Bemouilli equation, (21)], produces

y
, B v dv . % dr _y 8u
Yo "az 9y o(az*}:’ ?."")d’ V' (22)
A first approximation is to let
2
v %% .o [23)

ay?

Integrating (23] twice and utilizing boundary conditions, [19), results in a linear velocity
profile

>4 [24]

A second approximation is obtained by substituting the linear velocity profile, [24],
into differential equation {22). Integrating twice and utilizing boundary conditions, {19}, as

R R

(25]
dr 4
_3yfde. s -) (1) -(2 y
24 v (dc * P s ) |\3 [ YV
Applying the additional boundary condition that
g—;- 0 at y=38 [26)
to the differentiated form of Equation [25] yields
2
d(r,8) 2 18yr 2



For a linear velocity profile, (24],
0-2 ~ (28)

where 0 is the two-dimensional momentum thickness

8
(] -I -;11(1--"’&)0 (29}
°
Substituting 6 in (27) gives
2 2
dair @ 2 ve
-é-:'-l+% L0 -4 = (30)

Integrating the linear differential equation, (30], produces
t
2
() -.} -UL' v, US da (31
0
with the stagnation point 2 = 0 as the initial point of integration. An interesting feature of
this result is its being identical in both form and numerical constants to the semi-empirical
result of Thwaites® when his two-dimensional solution is extended to the axisymmetric
case.!® Thwaites averaged known solutions of two-dimensional laminar boundary layers for
a variety of pressure gradients.
Now the momentum area (1 for axisymmetric boundary-layer flow in general may be de-
fined as

8
a (1 -.!) d 32
. L L (1-2)ray fs2)
Since
fer, +y COS O (11)
with
0Sy<s
(33]
0L cosal
then in general
fe0 <O <(r, +8)0 (34]

Hence for 3 << r, which is the case under consideration

Q=r,0 (35]
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A non-dimensional form of the momentum equation, {31], convenient for calculation

A s [ G

where ] is the axial distance from the nose,
dl = cos a dz (37)

L is the length of the body and R, is the body Reynolds number given by

Ry «= [38]

Transition to turbulent flow is assumed to occur instantaneously at a transition point
(¥/L), which then becomes the upper limit of integration in Equation (36] when the integration
is performed for the complete laminar boundary layer.

TRANSITION

As the boundary layer thickens dowristream on the body, the laminar flow tends to be-
come unstable and undergo transition to turbulent flow under the stimulus of disturbances in
the flow. The transition zone may be considered to extend from the point where the charac-

: teristic shape of the mean-velocity profile of the laminar boundary layer begins to change to
the point where the characteristic shape of the mean-velocity profile of the turbulent boundary
layer first appears. For most drag calculations the zone of transition is short enough to be
adequately represented by a transition point. The position of transition depends largely upon
the interaction of the boundary-layer flow with random disturbances in the flow. Significant
parameters of the boundary-layer flow affecting the position of transition are the boundary-
layer Reynolds number representing the ratio of inertial forces to viscous forces, the pres-
sure gradient in the downstream direction, and the curvature of the surface. The source of
random disturbances may be the turbulence in the free stream, the roughness of the surface
or noise being transmitted through the fluid.

As shown theoretically by Tollmien!! and Schlichting” among others (see summary in
Reference 12) and verified experimentally by Schubauer and Skramstad™ and Liepmann,!* the
laminar boundary layer exhibits stability characteristics which are governed largely by the
boundary-layer Reynolds number and by the pressure gradient. Random disturbances of van-
ishingly small amplitude have certain frequencies amplified and other frequencies damped by
the laminar flow in the boundary layer. The amplified fluctuations combine into regular waves
termed Tollmien-Schlichting waves which increase in amplitude downstream at a rate deter-
mined by the Reynolds number and the presaure gradient of the boundary layer. Intermittent
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bursts of high-frequency fluctuations which are associated with intermittent separations of the
laminar flow herald the arrival of the more random fluctuations characteristic of fully devel-
oped turbulent flow. The transition just described, which depends on the amplification of van-
ishingly small disturbances, may be termed self-excited transition.

Disturbances of greater amplitude arising from free-stream turbulence or rough surfaces
tend to hasten the decomposition of the laminar boundary layer into a turbulent boundary layer.
Tayloe!$ has developed the concept of momentary separations arising from momentary adverse
pressure gradients as the mechanism instigating turbulent motion. In accordance with Taylor's
analysis both the scale and intensity of the free-stream turbulence have been shown experi-
mentally ® to have a marked bearing on the position of transition.

The studies of Liopmann!*:!7 on the stability of laminar boundary layers on curved
surfaces have shown the Tollmien-Schlichting type of stability to exist on surfaces convex to
the flow and the Gortler type of stability involving vortices to exist on concave surfaces. Con-
vex surfaces have a greater stabilizing effect and concave surfaces a lesser stabilizing effect
than flat surfaces.

The presence both of large boundary-layer Reynolds numbers and of adverse pressure
gradients tends to promote transition by increasing the instability of the laminar boundary
layer and by accelerating the amplification of the Tollmien-Schlichting waves,

Under special circumstances transition is hastened when the laminar boundary layer
separates from the body and reattaches itself as a turbulent boundary layer. Such separation
may be caused by sharp adverse pressure gradients'%on bodies at large angles of attack or by
sharp adverse pressure gradients induced by large single roughnesses obstructing the flow'®

Quantitative criteria for establishing the transition points on smooth bodies of revolu-
tion will be considered here for two technically important flow situations which are character-
ized by the absence or presence of significant amounts of turbulence in the main flow stream,
Zero or low-turbulence condition exists in specially constructed low-turbulence wind tunnels
while a condition of various degrees of turbulence is present in most wind tunnels and flow
facilities. The flight of aircraft is considered a case of low turbulence on the basis of tests
by Jones?© who concluded that the scale of turbulence in the atmosphere is such as to have
no effect on transition. A cimilar low-turbulence condition may be assumed in the case of
bodies moving in the depths of the oceans where currents are absent.

Transition in the low-turbulence case may be considered to be of the Tollmien-
Schlichting type wherein vanishingly small disturbances are amplified in the boundary layer
to the castastrophic point of resulting turbulence within the boundary layer. The stability
analysis of laminar boundary layers shows the existence of a point of neutral stability whero-
in the immediate neighborhood upstream disturbances of all frequencies are damped out.
Mangler?! has prepared a chart, partly reproduced in Figure 3, which specifies the neutral
stability point in terms of the critical value Ry y of boundary-layer Reynolds number R,

where
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Ry - 2L (39)

v
as a function of a pressure-gradient parameter ( %g . The curve shown, which is based on
1 4

the stability characteristics of Pohlhausen-type velocity profiles as calculated by Schlichting
and Ulrich?? is applicable to both two-dimensional and axisymmetric boundary layers,
Unfortunately no theoretical analysis has been developed for locating the point of seif-
excited transition from the amplification of the Tollmien-Schlichting waves past the point of
neutral stability. Experimental evidence!’ indicates a pronounced effect by favorable pressure
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gradients in damping and adverse pressure gradients in amplifying the Tollmien-Schlichting
waves,

A rough empirical criterion for locating the point of self-excited transitions is ascribed
to Walz2? who suggests a critical value of the Reynolds number of transition Ry ,, ss thrice
that for neutral stability or

Koee = 3Ro.n (40]

There follows, however, a new empirical criterion which is based on more rational
grounds and which attempts to incorporate the effect of pressure gradients in determining the
position of self-excited transition, Since the transition point depends on the cumulative ef-
fect of the pressure gradients from neutral stability to transition, it would seem appropriate
to use as a first approximation the average pressure gradient for one of the significant parame-
ters. Accordingly two-dimensional data on transition points from tests on wing sections in
flight2%-24 and in low-turbulence wind tunnels!3:25:26 were analyzed on this basis. As shown
in Figure 4 the difference in Reynolds numbers from the point of neutral stability to transition

EO ¢ - k’o n i8 plotted against the average pressure gradient parameter _33 .ﬂ over the
» (] v z
same region where

ra (a1

The tildes over the symbols refer to two-dimensional flows. Examination of the plotted data
in Figure 4 indicates a reasonably consistent variation between the two parameters involved.
The conversion of the preceeding two-dimensional data for use in axisymmetric flows
past bodies of revolution may be accomplished by means of Mangler's relations’+2! for trans-
forming the equation of n... 7n of two-dimensional boundary layers to those of equivalent axi-
symmetric boundary layers on bodies of revolution. Mangler's transformation relations are

2
dz-c"_"- dz

g-c

I
= 'G »

(42]

-

0« C-20
o L

T(%) = Ul
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where the tildes over the quantities refer to equivalent two-dimensional conditions and C is
an arbitrary constant.

A simple expression will now be derived for . s ‘fig_whwh can be used to anslyze two-

dimensional data and which can be extended into an eqmvulont axisymmetric system, First
the following two-dimensional momentum equation is obtained from the axisymmetric momentum
equation, [30], by utilizing Mangler's relations [42]

S & A o

Since in general

dé?

240 1 -
iF "y ra e

Q.
L ]
b
. S

then from [48]

Bdl 4 _ 1
v d¥ 45 5v

(45]

Averaging & %;q over the distance from neutral stability to transition in accordance with
4

[41]) gives simply

Bl |08 -0y
v d§ 45 Sv

—= (46}
e ~ N

In order to use the two-dimensional data of Figure 4 to determine the self-excited tran.

sition point for axisymmetric flow, it is necessary to express £ ‘% in teems of an equiva-
| 4

lent axisymmetric system. Applying Mangler's transformations to [43] and integrating in ac-

cordance with [41) givosz %g in equivalent axisymmetric quantities as
| 4

. T z) (,wz U z) W
- vey - 0
240 _ 4 1 (7-"" ) N 7
v dz 15 By w (47)
J. -'-'5- dz
- !N L L

Furthermore, in order to use the two-dimensional data of Figure 4 to determine the self-
excited transition points for axisymmetric flows, it is necessary to convert the Reynolds
number for self-excited transition in two.dimensional flows k'o' ;s to that for axisymmetric
flows on bodies of revolution Ry ,,. Now Mangler’s transformations (42] give for all Reynolds
numbers of laminar flows
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Owing to the presence of the arbitrary constant C, it is obvious that Mangler's transformations
are not sufficient to determine the critical values of the Reynolds numbers for transition.
Hence, other considerations must apply. In the analysis of the stability of laminar flows on
bodies of revolution, it was found® 2! that the resulting linearized equation of the disturbed
flow at the limiting condition of large Reynolds numbers was the same as that for two-:
dimensional flows. Hence

Bon = Ro,n (49]

and as stated previously, the neutral stability chart of Figure 8 is applicable to both two-
dimensional and axisymmetric flows on bodies of revolution. As a first approximation a
similar condition will be assumed to hold for self-excited ransition. Then

s Ry, (50)

As a check on the essential validity of the preceding, the self-excited transition points
were computed for Lyon's27 bodies of revolution on the basis of Figure 4. Owing to the non-
existance of low-turbulence wind tunnels at the time of Miss Lyon's tests, the condition of
least degree of turbulence represented in her tests was that when the turbulence-producing
screens were not inserted in the wind tunnel. Comparison is then made in Table 1 of the axial
locations I/L of the computed neutral stability points and self-excited transition points with
the test data for the no-screen condition.

TABLE 1

Axial Locations /L of Transition Data for Lyon's Bodies of Revolution??

Subiect Model A Wodel B
e Ry = 2.09 x 108 R, =2.075x W

Computed Neutral Stability Point 0.2 0.13

Computed Selt-Excited Transition Point 0.56¢ 0.7
Measuted Transition Region ‘ 0.50-0.70 0.30-0.35

- (without screen)

. . 0-0.13
Regions of Favorable Pressute Gradient 0-0.% 0.40-0.61
0.13-0.40

Regions of Adverse Pressure Gradient 0.30-1 0.61-1
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The measured transition points should be behind the neutral stability points and
forward of the self-excited transition points owing to the small amount of natural turbulence
in the wind tunnel. Examination of Table 1 confirms this. The reason for the large difference
between the measured transition point and the self-excited transition point on Model B is due
to the favorable pressure gradient, 0.40 < {/L < 0.81, which tends to delay the development

of self-excited transition.
In order to obtain the neutral stability and transition pointas, it is more convenient to

use nondimensional relations. From [36] there results

ey @ .

/A
£4y . (%2)(7—‘)‘! :((LZ-)) cos @ (52)
Thus, from [47) f (,_mz ) > 2 W
i | -2
%’%g.t_%< (.‘.).. ts ~on | (53]
J‘L 's 22 . !
)

The neutral stability point or self-excited transition point is determined graphically by the
intersection of a curve representing the appropriate parameters of the given boundary layer
with the curves of Figure 3 or 4, as the case may be.

The position of transition on a body in a wind tunnel or other flow facility depends,
to a great extent, upon the scale and intensity of the turbulence in the free stream. To
simplify the analysis the representative measure of turbulence in the stream will be taken as
the ratio of the root mean square of the velocity fluctuations in the z-direction to the mean
velocity of the free stream or m/ U,_. Data for flat plates without pressure gradient from

tests in wind tunnels!3:28:29 gre plotted in Figure 5, the ordinates being the difference in
the boundary-layer Reynolds numbers for transition and that for neutral stability Rg o~ Ro N
and the abscissae being the percentage of turbulence Yu “%y U, in the free stream. Itis to

be noted that for flat plates the neutral stability point seems to be the limiting position of
transition for streams of increasing turbulence while the self-excited transition point is the
limiting position of transition for streams of decreasing turbulence.
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Figure 5 - Position of Transition in a Turbulent Stream
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A similar trend for boundary layers with pressure gradients is indicated by the test data
for the flow over an elliptic cylinder! ® as plotted in Figure 5. On the basis of the neutral
stability point and the self-excited transition point as the lower and upper limiting positions
of transition for boundary layers with pressure gradients in general, a rough criterion may be
established for estimating the position of transition on bodies immersed in streams containing
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turbulence. If the curve for transition for any boundary layer with a pressure gradient is as-
sumed geometrically similar to that for a flat plate as plotted in Figure 5, the Reynolds
number for transition Ro.‘b for boundary layers on bodies in a stream with turbulence may be
stated as

RO. w ~ Ro N - RG.;_b - RO.N) (54]
Rg,es = Ro,n  \Rg s - Ro N A

where the subscript 0 refers to flat-plate values without pressure gradient. For more precise
results, it is best to depend upon measured locations of the position of transition to obtain
values of the Reynolds numbers for transition characteristic of the particular wind tunnel or
flow facility being utilized.

AXISYMMETRIC TURBULENT BOUNDARY LAYER

GENERAL

~ Owing to the incomplete state of present knowledge, concerning the mechanics of
turbulent flow processes, the analysis of turbulent boundary layers lacks the clearly defined
features of laminar boundary layers. In order to arrive at results of immediate utility, exten-
sive reliance has to be placed on empirical data to augment theoretically derived relations,

Turbulent flows, in general, may be treated from the Reynolds viewpoint, this consid-
ers wrbulent flow to consist of a mean flow upon which a fluctuation flow of much smaller
magnitude is superimposed. After the combined mean and fluctuation quantities are substi-
tuted into the Navier-Stokes equations of motion for viscous flow, appropriate time averages
of the resulting flow lead to the Reynolds equations of motion containing separate terms for
the mean quantities and the fluctuation quantities, The form of the Reynolds equations is
similar to the Navier-Stokes equations with the significant exception of the presence of addi-
tional terms which consist of averages of various products of the fluctuation velocities.
These additional terms ma}T be shown to act as apparent stresses (Reynolds stresses) within
the flow. It is, however, iav present lack of analytical relations for the Reynolds stresses
which has made the theoretical treatment of turbulent flows so difficult.

Turbulent boundary-layer equations are derived from the Reynolds equations in the
same way as laminar boundary-layer equations are derived from the Navier-Stokes equations,
i.e., by the process of eliminating terms of negligible magnitude.

In the case of axisymmetric flow past a body of revolution with negligible longitudinal
curvature, the Reynolds equations of motion become*

*The Reynolds equations of motion for general curvilinear coordinates are written in tensor notation in Refer-
ence 30
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and the equations of continuity
a(rv) , d(rv) _ 0 (561

dz dy

‘.’.g.::_'l + _3__.” 'y"' =0 (57)

The unprimed quantities refer to the mean flow and the primed quantities to the fluctuation
flow. The bars over the various products indicate averages in accordance with the Reynolds
concept. Specifically, u, v, ¢ Y primed or unprimed, represent components of velocity in the
z, y, and ¢ directions, respectively. As before, z is the distance along the meridian profile
and y is the distance perpendicular to the profile. ¢ is the angle between any meridian plane
and some reference meridian plane.

Eliminating terms of negligible magnitude in [55] gives the following equations of
motion for the axisymmetric boundary layer on a body of revolution

d ,o0u . 13z L o), L d0r)
"az”’ay p 0z pr z +pr y

[58)
0=-9
W
where :
o= p? (59)
is the negative value of a Reynolds normal stress and
T = du _ pu’v’ (60]

is the total shearing stress.
Integrating the boundary-layer equations, [58], across the boundary layer in the y-
direction from y = 0 to y = & and incorporating the equation of continuity, {56], gives the dif-
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ferential form of the momentum equation for axisymmetric turbulent boundary layers on bodies
of revolution

8
48, p. Qa0 ., e , L 4 d
d’+( +2)U e L v + U 3 j ordy (61)
0

where the momentum area (1 is defined in Equation (82]. In terms of the displacement area A,
defined in [10] and 0, the shape parameter for axisymmetric flow is

N
A 0 [62]

The momentum equation, [61], will now be considered for the two cases where the boundary
layer is thin compared to the radius of the body and where the boundary layer is of like
magnitude.

BOUNDARY LAYER THIN RELATIVE TO BODY RADIUS: & <<r,

In the region forward of the tail, the boundary layer is thin relative to the radius of the
body 8 <<r,. Here the momentum equatiom, (61], may be reduced to a simpler form.
Since within the boundary layer

rwgrgrw+8 [63)
it follows from [82] that
1,0 < Q < (r,+ 8)6 (34]
from (10] that
rws‘ <A< (ry, + 9 8. [64)
and from [62) s
) s (22
r, +9o "
where # is the two-dimensional shape parameter
*
H-L [66]
Also 5 8 5
7‘%('?"[ ady) <d—‘i- J‘ o rdy <-;d; (r, + 8) j ody| [67)
0 o )

Evidently for 5 <<r , 2 =r 6, A - - 8', A =H, and

& 8
d
d_d; I o fdy = a; ('W J’ 4 dy)
1]

o
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Furthermore
) )

~ d
;id;(""’J‘ ody)-,er;J’ o dy (68]

0 0

8 d
since ( 'f ady) :i-'-'i is empirically of a lower order of magnitude. Hence the momentum
[ T

equation, (81}, becomes for & <<r

5
Wa | (yogy el gl (2o, L 4 I o) o)
dz U dz PU2 pu2 dz A
r s
The sum of terms p—l‘j“z and -Plu-f J‘; J ody may be considered as an effective
coefficient of local skin friction, i.e., 0
T, h g 1 d
— = ¥+ = d 7
(,,w)“ ek [ ow (o)
L
0

In their study of two-dimensional boundary layers in adverse pressure gradients, Wieghardt
and Tillmann found that the values of (r, /p Uz)e" computed from the momentum changes of
the mean flow displayed unexpected increases near separation.3! Since tests by Ludwieg and
Tillmann32 have shown the values of T,/ P U? to decrease in an adverse pressure gradient
faster than those for flat plates without pressure gradients, the explanation of the increase in
(7./p Uz)e" has to be sought elsewhere. Wieghardt has attributed this apparent increase
wholly to the convergence of the flow caused by the thickening of the boundary layer on the
opposite sides of the wind tunnel.ﬁ':"3 On the other hand, Newman3* and various investigators
of the National Advisory Committee for Aeronautics35+36:37 have shown this increase to be
partly accounted for by the increase in the value of the normal-stress term —H 4 J‘ ody,

pU® dz ),
especially close to separation. Hence for adverse pressure gradients, the decrease in the
value of 7/ pU? tends to be compensated by the increase in the value of

1 4 5 o dy. This makes the coefficient of local skin friction for flat plates without
pU2 dz fo y P

pressure gradient ( 7, / p Uz)0 a close approximation to the effective skin friction, at least
for moderate pressure gradients. Lyon's experimental results tend to substantiate this,?’

Therefore with

) (%
(pl/z) i (W) (71l
0 olf

Equation [69] becomes
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1
2

0.01466
108, (2 Rg) [

-

)

T,
pU?

(

The coefficient of local skin friction for flat plates ( Tw/ pUZ)o decreases slowly
which is plotted in Figure 6.

with local Reynolds number Ry. A suitable formula valid for a large range of Reynolds num-

bers is that derived in Reference 38 from the K

flat plates,
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A rapid procedure (and one sufficiently accurate for drag calculations) is to

approximate (1, /pU? )p With a power law and to assume H constant. Wi
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where m and {, are constants, [72] becomes

d(r0) H+2) dU l+m -
as . 7 )‘4; (" 6) - ("'T{"’L)('.,o)'"' (75)

which is a ﬁrabonler differential equation in r, @ of the Bernoulli type. For H constant, [75]
gives for interval of integration z, to 2,

*2

R R N N O X7 T

j=m

1
where

jn (1+m) (H +2) (77)

Lyon found that H = 1.4 gave good agreement between the experimental and calculated
drags.?” Since ( =,/ pU?), in Equation [78] gives almost a straight line on a log-log plot
as shown in Figure 6, a power law approximation proves a close fit. For 103 < R4 < 106, a
least-squares fit of [73] gives

m = 0. 1688
(78]
¢, = 0.008361

A more convenient nondimensional form of [76] is

(U) "(rwa)“" (U)i(r“p)“"+ (1+m) ¢, J‘W“’ (_'l)‘“'(-u:y-. "(z')
T -_— bl et —_— —_— seca

U. 2 LZ 2 U- . Lz A RL. L) L ]

' ' (79]
BOUNDARY LAYER NEAR THE TAIL

It is apparent that the previous assumption 5 <<r_ is no longer valid towards the after
end of the body where the radius »  goes to zero at the tail and the boundary layer progres-
sively thickens. Consequently the general form of the momentum equation [61] has to be em-
ployed; for constant A, it may be integrated to the form

U A+2 1 %e r i 5 A
1 = e | —_— -~ 1 +2 4
Q, n‘(lj) + ghez (rw + % I ordy)U

e

where the subscript g refers to the initial point of integration and the subscript e to the tail
of the body.
r

Experimental evidence3” indicates that ' =3 * —1-7 g f s ordy in the right-
plU pU* de J,

hand side of Equation [80] is substantially linear with respect to z along the after end, and
drops to zero at the tail. Consequently
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F 4
) (81)

L U A ( _’."ig) (’. -

r 1 4 = fr

v o2 ' pUY da A ora Y o U V22

Furthermore, the variation of U with respect to z is also substantially linear along the after

ond or
U- v, z, -z (82)

Inmerting these linear relations, Equations [81] and [82], into momentum equation (80] gives

U A+2 Tw (z _z)
-0 L c_§
e = O (’Df) *("” pU ), (h+3)(h+a) UP+2 (Ug- U2

(83]
x [(h+3) U"|+4 S d) U, U‘Ius . Ue;.ﬂ]
o noadimensionally
R, 0 (U/U_"” (w)(f.,\, [1 ({-2]!000
L ‘tfﬁfﬂj‘:) L j\o V%), (h+8)(h+4)(u_')h (%f-%:)z
(84]

. [(5,3) (%f)hu- ety (5—:)(;:)“3 +(U£:-)“‘]

kw (nitinl pouition ¢ of the tail portion of the boundary layer may be taken at 0.8 of the
Laugth wl the body. An average value of A = 1.4 over the tail portion is appropriate in view of

viw valuw ot A = 1,42 found on the Mark 13 Torpedo. ¥
tn the region of the boundary layer near the tail, it is useful to establish relations be-
viewn @ aned {1, 8¢ and A®, and A and /. A power law is assumed for the velocity profile or

&0

subabitubing thin expreasion into Equation (32) and performing the indicated integration

\U-l\l“p’! 11}



R e

Also from Equation [10]

. . H + 1)3 8’ cos
S {I[W’Lfﬂh] (_—)} o

e [rtieiy) (2eee)

Furthermore,

h=H (88]
14 H’(H+1)](oeosa)
(H-1) (H+ 9 .
In the wake where r, =0
Al (89]
2
TURBULENT WAKE

The boundary layer leaving the tail of the body as the wake has a somewhat higher
pressure and larger momentum area {1, than the wake far downstream. Since the momentum
area (1 of uhe wake far downstream determines the drag of the body, a relation is required
between 1_ and the momentum area {1, of the boundary layer at the tail.

With no skin friction in the wake and with negligible effect from the normal-stress term
the momentum equation [61] reduces to

48 |, (h4+2) 8 U,
G i R e (90l

Integrating by parts over the length of the wake from the tail to infinity downstream yields

A
U\*e* 2 N/
- -t - 91
Q, Q.(U.) exp[‘[ In 7 dl.] [91]

where the limiting value of A at infinity is unity.

A

U

The evaluation of exp U “In 7}2 dh ] proceeds empirically. Experimental evidence
1

suggests an empirical fit of a higher order parabola of form

U

In =
U ‘(h-—l)" (92]
U A -1

ln (] e

U
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Then
he U A 1 U
= gh (- = 93
e a (et 199
and [=A
e
A —
e u U\l+4
ool [ 0] (72 (54
Finally (h,+2) g3
U 1+¢9
Q, = Q, (‘U‘) (95]

This completes the relationships required for calculating the drag from the boundary-layer
development. It is seen that both the momentum area and the shape parameter at the tail are
required for a precise solution of the drag.

The choice of a value for ¢ is not critical since a large difference in ¢ results in only
a small error in the drag. Considering only a very limited amount of two-dimensional data,
Young? uses a linear relation for Equation (92], that is, a value of ¢ of unity. As shown in
Figure 7, test data for a body of revolution, the Mark 13 Torpedo,3? though meager, indicate

. ]
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that the ordinate I—E—U‘—‘70— approaches the limit of zero at the origin more gradually than by
(] 4

a linear relationship. Until additional test data are available, it is suggested that a value of
¢ = 7 be used for drag calculations. If the value of 4, = 1.42 (from the data for the Mark 13
torpedo) is also used in Equation [95], there results finally

U, \3-38
= —— 9
a_ -0 (U ) [96]

CONCLUDING REMARKS

The method described in this report gives a relatively simple procedure for computing
the viscous drag of a body of revolution to an engineering degree of accuracy. Any marked
deviation between the calculated and measured values of drag should be expected only in the
case of a shape differing radically from the usual streamlined figure.

To test the method of this report, drag coefficients of the model of the airship AKRON
were computed at various Reynolds numbers for comparison with measured values. 40.41
Measured values of the pressure distribution and measured locations of the transition point
were used in the calculations. The computed values were found to lie between the measured
values as shown in the accompanying table.

TABLE 2

Comparison of Measured and Computed Values of Drag Coefficient of
1/40-Scale Model of Airship AKRON

Drag Coefficient ¢
Reynolds Experimental
N';;"be' ‘Wooden Metal computed
L rodel Model
12.3 x 108 0.0198 0.0228 0.0222
15.0 = 10° 0.0193 0.0223 0.0216
17.3 x 108 0.0190 0.0219 0.0211

In conclusion, it is noted that in the case of low Reynolds numbers the viscous drag of
bodies of revolution depends to a large measure on the position of transition, and that in the
case of high Reynolds numbers, it depends on the detailed development of the turbulent bound-
ary layer in pressure gradients. The current theories on turbulent flow are semi-empirical in
nature. Accordingly, Before all the processes determining viscous drag are fully elucidated,
there is need for accurate measurements of such factors as velocity profiles and shearing-
stress profiles in turbulent boundary layers especially at high Reynolds numbers.
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For convenient reference, the various steps involved in calculating the viscous drag are
summarized in Appendix I.
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APPENDIX 1
CALCULATION PROCEDURE

For convenient reference, the various steps for computing the viscous drag of bodies

of revolution in axisymmetric flow are listed here.
1. Prescribed Data

a. Profile dimensions

)

p———T
L y @ '(L)
b. Pressure distribution

?-Pu v \? (z
—_— a1 -[Y .
2 [ J
¢. Body Reynolds number
UL
R, = = {38)

2. Transition Point

a. Neutral stability point (-lf:)
N

(1) Ry= l&) is computed from

%‘%(2)7—1(—)7 @ G) weaelf) w

Tw
] \L
824U 1),
2) — 42 f(L)ts computed {rom
U
62 JU (Ro’) 1 ib;) 08 o
vodz \R MUY (3 (52]
u) 9\

(3) Bg=1 (-0—2 g—%) is plotted to intersect the neutral stability curve of Figure 3
4

. !
to gtve (-—)
L N

b. Self-excited transition poinc(-é-)
‘s



]
from
(¥

(1) '3? dU’- /(-) is computed for various assumed vgluos of( ! )

(53]

Uil

-

(2) Rg (s~ Ro N~ I(‘.‘2 ==.}is plotted to intersect the curve of Figure 4 to give

correct value of (.%
L)y

c. Transition point for free-astream wrbulence( | )
(1]
of free stream (Ro',b - RO,N)O is determined from

(1) For prescribed

Figure 5.
(2) RO.:b is determined from
Ro,5 = Ro,n (Ro,cb - Ro.n) (54]
Ro.u - RO.N ”o.u - RO.N 0

3. Laminar Boundary Layer
(.Q.) at transition point.(—;:) is computed from

Lz‘

£, -Gl - by [ (@) o

or if Ry - l(t)hns been computed (' )
(3, -6) -6 gy
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4. Turbulent Boundary l.myor
a. Thin boundary layer, § <<r
e . rw9 is computed over distance (%) t.o(%)- 0.8 from
[}

A M o A W

0.8 (79)
S (M ()t ()" e afF)
R sy,
where m = 0,1686
j = 3.9732
¢, = 0.006361
b. Boundary layer near tail
Q .
(1) (Z?)‘ is computed from
(8), (8,659
Ly, L\,
’ (1 - .fl) seca
*(%)c (%) u_“:+ 2y gy (84]
p [ % Ys _ 4 !
(h+8)(A+ 4)( U_) (U: U,.)

x[(h*s)(-z—:)h+ -(h+4)(-—x_l)’”3 +(zl-‘-)‘#‘ .

(2) A valuo of 4 = 1.4 md(%) - 0.8 is tobe used.
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5. Wake
Q_ is computed from
v 3.3
a, - “-(b";) (9%]
8. Viscous Drag
Drag coefficient C, is computed from
4nQ)
- — (7
Cp y
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